864 research outputs found

    Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-

    Get PDF
    In a sample of 471 million BB events collected with the BABAR detector at the PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is either e+e- or mu+mu-. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi resonance. We find no evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.

    Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |V_{ub}|

    Get PDF
    We report the results of a study of the exclusive charmless semileptonic decays, B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu, B^+ --> eta l^+ nu and B^+ --> eta^' l^+ nu, (l = e or mu) undertaken with approximately 462x10^6 B\bar{B} pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q^2, the square of the momentum transferred to the lepton-neutrino pair, for B^0 --> pi^- l^+ nu, B^+ --> pi^0 l^+ nu, B^+ --> omega l^+ nu and B^+ --> eta l^+ nu. From these distributions, we extract the form-factor shapes f_+(q^2) and the total branching fractions BF(B^0 --> pi^- l^+ nu) = (1.45 +/- 0.04_{stat} +/- 0.06_{syst})x10^-4 (combined pi^- and pi^0 decay channels assuming isospin symmetry), BF(B^+ --> omega l^+ nu) = (1.19 +/- 0.16_{stat} +/- 0.09_{syst})x10^-4 and BF(B^+ --> eta l^+ nu) = (0.38 +/- 0.05_{stat} +/- 0.05_{syst})x10^-4. We also measure BF(B^+ --> eta^' l^+ nu) = (0.24 +/- 0.08_{stat} +/- 0.03_{syst})x10^-4. We obtain values for the magnitude of the CKM matrix element V_{ub} by direct comparison with three different QCD calculations in restricted q^2 ranges of B --> pi l^+ nu decays. From a simultaneous fit to the experimental data over the full q^2 range and the FNAL/MILC lattice QCD predictions, we obtain |V_{ub}| = (3.25 +/- 0.31)x10^-3, where the error is the combined experimental and theoretical uncertainty.Comment: 35 pages, 14 figures, submitted to PR

    Observation of time-reversal violation in the B0 meson system

    Get PDF
    The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or B¯¯¯0), and J/ψK0L or cc¯K0S final states (referred to as B+ or B−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, B¯¯¯0→B− and B−→B¯¯¯0, as a function of the time difference between the two B decays. Using 468×106 BB¯¯¯ pairs produced in Υ(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS+T=−1.37±0.14(stat)±0.06(syst) and ΔS−T=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel)

    Cross Sections for the Reactions e+e- --> K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events

    Get PDF
    We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.Comment: 35 pages, 42 figure

    Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons

    Get PDF
    We present improved measurements of CP-violation parameters in the decays B0π+πB^0 \to \pi^+ \pi^-, B0K+πB^0 \to K^+ \pi^-, and B0π0π0B^0 \to \pi^0 \pi^0, and of the branching fractions for B0π0π0B^0 \to \pi^0 \pi^0 and B0K0π0B^0 \to K^0 \pi^0. The results are obtained with the full data set collected at the Υ(4S)\Upsilon(4S) resonance by the BABAR experiment at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory, corresponding to 467±5467 \pm 5 million BBˉB\bar B pairs. We find the CP-violation parameter values and branching fractions Sπ+π=0.68±0.10±0.03,Cπ+π=0.25±0.08±0.02,AKπ+=0.107±0.0160.004+0.006,Cπ0π0=0.43±0.26±0.05,Br(B0π0π0)=(1.83±0.21±0.13)×106,Br(B0K0π0)=(10.1±0.6±0.4)×106, S_{\pi^+\pi^-} = -0.68 \pm 0.10 \pm 0.03, C_{\pi^+\pi^-} = -0.25 \pm 0.08 \pm 0.02, A_{K^-\pi^+} = -0.107 \pm 0.016 ^{+0.006}_{-0.004}, C_{\pi^0\pi^0} = -0.43 \pm 0.26 \pm 0.05, Br(B^0 \to \pi^0 \pi^0) = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}, Br(B^0 \to K^0 \pi^0) = (10.1 \pm 0.6 \pm 0.4) \times 10^{-6}, where in each case, the first uncertainties are statistical and the second are systematic. We observe CP violation with a significance of 6.7 standard deviations for B0π+πB^0 \to\pi^+\pi^- and 6.1 standard deviations for B0K+πB^0 \to K^+ \pi^-, including systematic uncertainties. Constraints on the Unitarity Triangle angle α\alpha are determined from the isospin relations among the BππB \to \pi\pi rates and asymmetries. Considering only the solution preferred by the Standard Model, we find α\alpha to be in the range [71,109][71^\circ,109^\circ] at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.

    Study of Upsilon(3S,2S) -> eta Upsilon(1S) and Upsilon(3S,2S) -> pi+pi- Upsilon(1S) hadronic trasitions

    Get PDF
    We study the Upsilon(3S,2S)->eta Upsilon(1S) and Upsilon(3S,2S)->pi+pi- Upsilon(1S) transitions with 122 million Upsilon(3S) and 100 million Upsilon(2S) mesons collected by the BaBar detector at the PEP-II asymmetric energy e+e- collider. We measure B[Upsilon(2S)->eta Upsilon(1S)]=(2.39+/-0.31(stat.)+/-0.14(syst.))10^-4 and Gamma[Upsilon(2S)->eta Upsilon(1S)]/Gamma[Upsilon(2S)-> pi+pi- Upsilon(1S)]=(1.35+/-0.17(stat.)+/-0.08(syst.))10^-3. We find no evidence for Upsilon(3S)->eta Upsilon(1S) and obtain B[Upsilon(3S)->eta Upsilon(1S)]<1.0 10^-4 and Gamma[Upsilon(3S)->eta Upsilon(1S)]/Gamma[Upsilon(3S)->pi+pi- Upsilon(1S)]<2.3 10^-3 as upper limits at the 90% confidence level. We also provide improved measurements of the Upsilon(2S) - Upsilon(1S) and Upsilon(3S) - Upsilon(1S) mass differences, 562.170+/-0.007(stat.)+/-0.088(syst.) MeV/c^2 and 893.813+/-0.015(stat.)+/-0.107(syst.) MeV/c^2 respectively.Comment: 8 pages, 16 encapsulated postscript figures, submitted to Phys.Rev.
    corecore